CS143 Handout 24
Summer 2012 August 1, 2012

Three Address Code Examples

Handout written by Maggie Johnson and revised by Julie Zelenski.

Three Address Code

Three-address code (TAC) will be the intermediate representation used in our Decaf
compiler. It is essentially a generic assembly language that falls in the lower-end of the
mid-level IRs. Some variant of 2, 3 or 4 address code is fairly commonly used as an IR,
since it maps well to most assembly languages. A TAC instruction can have at most
three operands. The operands could be two operands to a binary arithmetic operator
and the third the result location, or an operand to compare to zero and a second
location to branch to, and so on. For example, below on the left is an arithmetic
expression and on the right, is a translation into TAC instructions:

a=b*c+b?*d tl1 =Db* c;
t2 = b * d;
_t3 = _t1 + _t2;
a = 13;

Notice the use of temp variables created by the compiler as needed to keep the number
of operands down to three. Of course, it's a little more complicated than the above
example, because we have to translate branching and looping instructions, as well as
function and method calls. Here is an example of the TAC branching instructions used
to translate an if-statement:

if (a<b +c) _t1 =Db + c;
a=a- c; t2 =a< _t1;
c=b*c I1fZ t2 Goto _LO;

t3 = a - c;
a= 1t3;
_LO: t4 =b * c;
c = _t4;

And here is an example of the TAC translation for a function call and array access:

n = Readl nteger(); _t0 = LCall _Readlnteger;
Bi nky(arr[n]); n = _to0;

t1 = 4

_t2 = _t1 * n;

_t3 = arr + _t2;

_td = *(_t3);

PushParam _t 4;

LCal | _Binky;

PopPar ans 4,

Decaf TAC Instructions

The convention followed in the examples below is that t 1, t 2, and so on refer to
variables (either declared variables or temporaries) and L1, L2, etc. are used for labels.
Labels mark the target for a goto/branch and are used to identify function/method
definitions and vtables.

Assignment: Function/method calls:

t2 = t1l; LCall L1,

t1l = "abcdefg"; tl = LCall L1;

tl = 8; ACal | t1;

t3 = _LO; t0 = ACall t1;

(rvalue can be variable, string/int (LCal | afunction label known at compile-time,

constant, or label) ACal | a computed function address, most likely

.) from vtable. Each has two forms for void /non-

Arithmetic: void return value)

t3 =12 + t1;

S Function/method definitions:

t3 = t2 / tlz Begi nFunc 12;

t3 =t2 %t1l; (the number is size in bytes for all locals and

(not all arithmetic operators are present, temporaries in stack frame)

. . EndFunc;
t h h h ’

mtlls -s.ynt e51z.e others using the Return t1:

primitives available) Return:
Relational/equality/logical: Memory references:

t3 =t2 == t1, tl = *(t2);

t3=t2|] tL *(t1 + -4) = t2:

(must synthesize other ops as necessary) (optional offset must be integer constant, can be

positive or negative)
Labels and branches:

';;O L1: Array indexing:

IfZ tl Goto L1; To access arr[5], add offset multiplied by

(take branch if value of t1 is zero) elem size to base and dereference
Handling parameters: Object fields, method dispatch:

PushParam t 1; To access ivars, add offset to base, deref

(before making call, params are To call method, retrieve function address

individually pushed right to left) from vtable, invoke using ACal |

PopPar ans 24;

(after call, pop all params, the number is Data specification:
size in bytes to remove from stack) VTabl e O assNane = L1. L2

Decaf Stanford Library Functions

These functions are invoked using LCal | instructions just like ordinary user-defined
functions.

_Aloc one integer parameter, returns address of heap-allocated memory of
that size in bytes

_ReadLine no parameters, returns string read from user input

_Readl nt eger no parameters, returns integer read from user input

_StringEqual two string parameters, returns 1 if strings are equal and 0 otherwise

_Printint one integer parameter, prints that number to the console

_PrintString one string parameter, prints that string to the console

_Pri nt Bool one boolean parameter, prints true/false to the console

_Hal't no parameters, stop program execution

TAC Examples

What we have to do is figure out how to translate from Decaf to TAC. This includes not
only generating the TAC, but figuring out the use of temp variables, creating labels,
calling functions, etc. As we traverse our tree, we will create the TAC instructions one
at a time. We can immediately print them out or store them for further processing.
Most of the instructions can be emitted as we go and never re-visited, although in some
situations (most notably when performing optimization) we may go back and make
changes to earlier instructions based on information we gather later in the process.

We will simplify the Decaf language a little by excluding doubl es for code generation
and internally treating bool s as 4-byte integers. Classes, arrays, and strings will be
implemented with 4-byte pointers. This means we only ever need to deal with 4-byte
integer /pointer variables.

As we visit each subtree, we will create the necessary instructions. Let’s start with a
trivial program:

void main() { mai n:
Print("hello world"); Begi nFunc 4;
} _t0 = "hello world";
PushParam _tO0;
LCall _PrintString;
PopPar ans 4;
EndFunc;

Visualize the tree for this simple program—there is the program node at the top, its list
of declarations has only one entry, the function declaration for mai n, within mai n we

have a list of statements—in this case, just the one print statement. In order to generate
code for a program, we traverse its list of declarations, directing each declaration to
generate code. For the mai n function, we generate its label and function markers and
then iterate over the statements having each emit code. A print statement translates to a
call to the Decaf built-in library function _Pri nt Stri ng to do the actual printing. The
library functions are called like any ordinary global function, but the compiler provides
the code (and hooks are made the instant the compiler builds the executable.)

Here is another simple program with a little arithmetic:

voi d mai n() mai n:

{ Begi nFunc 12;
int a; t0 = 2;
a=2+ g t1 = t0 + a;
Print(a); a= _t1;

} PushPar am a;

LCall _Printlnt;
PopPar ans 4,
EndFunc;

Consider where the instructions above must be emitted relative to the tree traversal.

What additional processing would need to be added for a program with a complex
expression?

voi d mai n() mai n:
Begi nFunc 44;
int b; _t0 = 3
int a; b= _10;
t1 = 12;
b = 3; a = t1;
a = 12; t2 = 2;
a=(b+ 2)-(a*3)/6; t3 =Db + _t2;
} _t4 = 3;
_tb =a* _t4
_t6 = 6;
t7 = t5/ _t6;
_t8 = _t3 - _t7;
a = 18;

EndFunc;

Now let’s consider what needs to be done to deal with arrays (note the TAC code below
doesn't do array bounds checking, that will be your job to implement!)

void Binky(int[] arr) _Bi nky:

Begi nFunc 44;
arr[1] = arr[0] * 2; _t0 = 1;

} _t1 = 4
t2 = _t1* _to;
_t3 = arr + _t2;
_t4 = 0;
_t5 = 4;
_t6 = _t5 * _t4;
_t7 = arr + _t6;
_t8 = *(_t7);
_t9 = 2;

t10 = t8 * _t9;
*(_t3) = _t10;
EndFunc;

Before we deal with classes, we should look at how function calls are implemented.
This will facilitate our study of methods as they are used in classes. A program with a
simple function call:

int foo(int a, int b) _foo:

{ Begi nFunc 4;
return a + b; _t0 = a + b;

} Return _tO;

EndFunc;

voi d mai n() mai n:

{ Begi nFunc 12;
int c; PushPar am d;
int d; PushPar am c;

_t1 = LCall _foo;
foo(c, d); PopPar ans 8;
EndFunc;

Now for a class example with both fields and methods (notice how t hi s is passed as a
secret first parameter to a method call)

class Animal { voi d Bi nky(Cow betsy) {
i nt hei ght; bet sy. I nit Cowm 5) ;
void InitAniml (int h) { }

t hi s. height = h;
}
}

cl ass Cow extends Animal {
void InitCowint h) {
I ni t Ani mal (h);
}

}

_Animal . I nitAnimal: VTabl e Cow =

Begi nFunc 0; _Aninal . InitAniml,
*(this + 4) = h; _Cow. I ni t Cow,
EndFunc; ;

VTabl e Animal = _Bi nky:
_Aninal . InitAnimal, Begi nFunc 12;
; _t2 = 5;
_Cow. I ni t Cow: _t3 = *(betsy);

Begi nFunc 8; t4 = *(_t3 + 4);
_t0 = *(this); PushParam _t 2;
t1 =*(_t0); PushPar am bet sy;
PushPar am h; ACal | _t4;
PushParam t hi s; PopPar ans 8;

ACal |l _t1; EndFunc;
PopPar ans 8;
EndFunc;

How about some TAC that implements control structures—the i f statement, for
example?

voi d mai n() mai n:
{ Begi nFunc 24;
int a _t0 = 23;
a = _1t0;
a = 23; _t1 = 23;
if (a == 23) t2 = a = _tI1;
a = 10; Ifz t2 Goto _LO;
el se _t3 = 10;
a = 19; a = 13;
} Goto _L1;
_LO:
_t4 = 19;
a = _t4;
_L1:

EndFunc;

Or the even snazzier whi | e loop (f or loops are left as an exercise for the reader):

voi d mai n() mai n:
{ Begi nFunc 40;
int a _to0 = 0;
a = 0; a= _1t0;
_LO:
while (a < 10) { _t1 = 10;
Print(a %2 == 0); t2 =a< ti1;
a=-a+1; Ifz t2 Goto _L1;
} t3 = 2;
} td = a %_t3;
_t5 = 0;
t6 = _t4 == _t5;

PushPar am _t 6;_
LCall _PrintBool;
PopPar ans 4;

L1:
EndFunc;

Using TAC For Other Languages

The TAC we use is fairly generic. Although we show our examples in the context of
Decaf, a TAC generator for any programming language would generate a similar
sequence of statements. For example, in the (in)famous dragon book, the following
syntax-directed translation is used to generate TAC for a while loop. (Check out pages
469 of Aho, Sethi, and Ullman)

S ->wiile E do S1

{ S.begin = new abel
S.after = new abel
S.code = gen(S.begin ':")
E. code
gen('if' E place '='" '0' 'goto' S.after)
S1. code
gen('goto' S. begin)
gen(S.after ':")
}

One last idea before we finish. A nice enhancement to a TAC generator is re-using
temp variable names. For example, if we have the following expression:

E->El + E2

Our usual steps would be to evaluate E1 into t 1, evaluate E2 into t 2, and then set t 3 to
their sum. Will t 1 and t 2 be used anywhere else in the program? How do we know
when we can reuse these temp names? Here is a method from Aho/Sethi/Ullman (p.
480) for reusing temp names:

1) Keep a count c initialized to 0.
2) Whenever a temp name is used as an operand, decrement c by 1
3) Whenever a new temp is created, use this new temp and increase ¢ by one.

X =a*b+c*d e * f

(c =0 TO=a*hb

(c=1 T1=c¢c*d (c = 2)
(c=0) TO=T0+T1

(c=1 Ti1=e*f (c = 2)
(c=0) TO=T0-T1

x = TO

Note that this algorithm expects that each temporary name will be assigned and used
exactly once, which is true in the majority of cases.

Bibliography
J.P. Bennett, Introduction to Compiling Techniques. Berkshire, England: McGraw-Hill,
1990.

S. Muchnick, Advanced Compiler Design and Implementation. San Francisco, CA: Morgan
Kaufmann, 1997.

A. Pyster, Compiler Design and Construction. New York, NY: Van Nostrand Reinhold,
1988.

